Representation and Learning in Feedforward Neural
Networks

H.L. Trentelman
Mathematics Institute, University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands,

Email: h.l.trentelman@math.rug.nl

This paper gives an introduction to feedforward neural networks. The aim
of this paper is to present some of the basics of artificial neural networks,
with a particular emphasis on the following two central issues. The first
central issue of this paper is: in what sense do artificial neural networks
represent mathematical functions, and what mathematical functions can be
(approximately) represented by an artificial neural network? The second
central issue of this paper is: what do we mean by ‘learning’ in artificial
neural networks, and how can a network learn to (approximately) represent
a given mathematical function?

1. INTRODUCTION

In the last decade, research on artificial neural networks has more and more
become a popular research field. Going back to the fourties, the study of arti-
ficial neural networks was mainly inspired by the desire to gain insight into the
principles that underly the functioning of the human brain (what is ‘learning’,
how does the human memory work, what are dreams, etc.). Since long, it is
believed that the human brain is built up from a large number (10*° — 10*!) of
interconnected, basically identical, elementary units, called neurons. Each neu-
ron is believed to function according to the same, relatively simple, biophysical
principles. The idea of artificial neural networks is, roughly speaking, to model
these simple biophysical principles into a single mathematical concept, called
an artificial neuron, and to study interconnections of these artificial neurons as
a model of the brain. The study of these interconnections typically takes place
by mathematical analysis or by computer simulation, and is hoped to lead to
a better understanding of how the brain processes information.

The more recent growth of interest in artificial neural networks seems to be
caused by their promise to yield solutions to all kinds of technical problems of
‘artificial intelligence’ that traditional approaches do not yield. This promise
is based on the observation that, while the working of the organic neuron is

385

based on such simple biophysical principles, the brain is capable of perform-
ing immensly complex tasks. This apparent contradiction is explained by the
enormous amount of neurons that, in addition, are interconnected in parallel.
Following this line of thought, there are reasons to believe that if we build a
‘machine’ consisting of a massive interconnection of artificial neurons (i.e., a
technical realization of an artificial neural network), then this machine is, in
principle, capable of performing complex tasks.

The present paper developed out of a three hour introductory talk on neural
networks that was given by the author in the context of the so-called ‘Recon-
structie Seminar’, a series of talks on various mathematically and physically
oriented scientific subjects that was held within a group of Dutch researchers
active in the field of Systems and Control during the academic year '92-’93.
The main constraint of the ‘Reconstructie Seminar’ was that the speaker had
to choose his/her subject outside the scope of his/her research area. The aim
of this paper is the same as the aim of the talk that was given in the Seminar:
to present some of the basics of artificial neural networks, with a particular em-
phasis on the following two central issues. The first central issue of this paper
is: in what sense do artificial neural networks represent mathematical func-
tions, and what mathematical functions can be (approximately) represented
by an artificial neural network? The second central issue of this paper is: what
do we mean by ‘learning’ in artificial neural networks, and how can a network
learn to (approximately) represent a given mathematical function?

The outline of this paper is as follows. Section 2 is devoted to some of the ba-
sics of artificial neural networks. We briefly explain the working of the organic
neuron, and introduce the notion of artificial neuron as a rough mathematical
model for the organic neuron. We give a formal definition of artificial neural
network and explain in what sense feedforward networks define functions in
the mathematical sense. We discuss the notion of network architecture, and
explain in what sense a network architecture defines a parametrized family
of mathematical functions. Next, we explain what we mean by learning in
artificial neural networks.

Section 3 is devoted to a discussion of a prototype neural network, the Per-
ceptron. We explain what functions can be represented by a Perceptron. We
also discuss the issue of learning in Perceptrons and talk about the famous
Perceptron convergence theorem.

In section 4 we deal with general layered feedforward networks. Again, we
concentrate in this section on the issues of representation and learning. We
discuss some very recent results on the approximate representation of math-
ematical functions by feedforward networks with one hidden layer. Next, we
come back to the issue of learning: in what sense can a layered feedforward
network learn a given mathematical function. In this context we explain, for a
simple special case, the famous Back Propagation Algorithm.

386

2. ARTIFICIAL NEURAL NETWORKS

2.1. Neurons

A typical neuron in the human brain consists of a central part, called the cell
body or soma, and a long tiny tubular fiber originating from this cell body,
called the azon. Also, the soma serves as the endpoint of a bundle of incoming
branches, called the dendrites. The axon, in turn, splits into a bundle of tiny
branches whose endpoints are called synapses. The neuron collects input signals
from surrounding neurons via its dendrites. When the total activity of these
input signals exceeds a certain value, called the neuron’s threshold value, then
the neuron sends a spike of electrical activity through its axon. This spike of
electrical activity branches out to the neuron’s synapses. At each synapse, the
electrical activity causes an input signal to be send to a neighbouring neuron,
via one of its dendrites.

The amount of influence of one neuron on another depends on the effective-
ness of the synapse between the two neurons: a certain amount of electrical
activity in a neuron causes a certain amount of input activity to be generated
at each of its synapses. The more effective a synaps is, the more input activity
it will generate. It is believed that the effectiveness of synapses can be subject
to changes in time. These changes in effectiveness of synapses or, equivalently,
these changes in the amount of influence that neurons have on other neurons,
is often used to explain the phenomenon of ‘learning’.

2.2. Artificial neurons

As a simple mathematical model to represent the most important features of the
organic neuron, MCCULLOGH and P1TTS in 1943, [20] proposed the following
definition. For a given positive integer n and real numbers wy,...,w, and @,
the artificial neuron with weights wy,...,w, and threshold 6 is the function f
from {0,1}™ to {0,1} given by

y= flzy,@,...,@,) = H(Zwixi +0).
i=1

Here, H denotes the Heaviside step function:

1 ifz>0
H(x)_{o ifz<0

If it takes the value 1, the neuron is said to ‘fire’, otherwise it is said to be ‘at
rest’.

The analogy with the working of the organic neuron is as follows. At a certain
moment the neuron under consideration receives signals from all n neurons to
which it is connected. The signal x; coming from neuron j is either ‘0’ or ‘1’
(corresponding to whether neuron j is firing or at rest). The effectiveness of the
synaps between neuron j and the neuron under consideration is measured by
the weight w;. Only if the total weighted sum)" | w;x; of these signals (called
the activation) exceeds the threshold value 6 of the neuron under consideration,

387

06 (threshold value)

7/
/
/
/

X1

w 1 \
X
2
W\
w
X3 3 H
y
=
X4
I

(weights)

FIGURE 1. Artificial neuron

this neuron is assumed to be sufficiently activated: it will generate the value
‘1’ (fire). If the weighted sum of the input signals is less than or equal to the
threshold value, the neuron will generate the output value ‘0’ (remain at rest).

More general, the Heaviside function appearing in this definition can be
replaced by an arbitrary function, say ¢ : R — R. For a given function o,

a given positive integer n and real numbers wy,...,w, and €, the artificial
neuron with weights wy,...,w, and threshold 0 is the function f from R" to
R given by

J(oy,@0,.. . 2,) = U(Zwiwi +6).
=1

The function ¢ is often called the transfer function, activation function, or
squashing function of the neuron. As mentioned, the transfer function can
in principle be any function. In a large part of the literature on artificial
neural networks, the transfer function is choosen to be a so-called sigmoid
function, i.e., loosely speaking, a function whose graph resembles the shape of
the character ‘S’. Examples of these are the function given by

1
U(I)—ma

and the function given by

388

o(x) = tanh(Bz)
(with 8 > 0).

2.3. Artificial neural networks

Loosely speaking, any interconnection of a finite number of artificial neurons is
called an artificial neural network. Formally, an artificial neural network with
N neurons is defined to be a directed graph with N nodes, 1,2..., N, where
node ¢ is identified with the artificial neuron with transfer function o;, and
threshold value #;, and where the branch from node j to node 7 is identified

with the weight w;;.
e output neuron
output neuron

input neuron input neuron

FIGURE 2. Four examples of neural networks

The neurons that correspond to the sources in the directed graph are called
the input neurons of the neural network, while the neurons that correspond to
the sincs in the graph are called the output neurons of the neural network. Any
other neuron in the network is called a hidden neuron.

If the graph corresponding to the network has no closed paths, then the the
network is called a feedforward network. Speaking in terms of input signals and
output signals, in a feedforward network the signals only travel in one direction.

389

Any network that is not a feedforward network is called a recursive network.
We will restrict ourselves in this paper to feedforward networks.

Now, after having defined a neuron to be a function of a particular structure,
and a neural network to be a directed graph, we explain in what sense a feed-
forward network performs ‘a cognitive task’. Suppose we have a feedforward
network with m input neurons, p output neurons, and a number of hidden
neurons. Such a network can always be interpreted as a function from R™ to
R?, in the following way. The input neurons are considered as devices that
generate the arguments of the function: input neuron ¢ generates the value x;.
Together, the m input neurons generate the vector z = (z1,...,2m). Next,
the hidden neurons perform operations on these values z;, according to the
particular transfer functions that each hidden neuron has. Finally, the output
neuron j generates the value y;. Together, the p output neurons generate the
p-vector y = (y1,...,Yp). In this sense, the neural network performs the task
of calculating the value of the output vector y from the input vector z: a feed-
forward network with m input neurons and p output neurons defines a function
F:R™ > RP (or FF: S — RP, with S a subset of R™) (see also Figure 3).

1 \\\/\ 1
— A

X
2 Y

hidden neurons

input neurons output neurons
FIGURE 3. Feedforward network representing a function

As an example, consider the following network with two input neurons, two
hidden neurons and one output neuron (see Figure 4). Assume that the transfer
functions of the hidden neurons and the output neuron are all equal to one and
the same function o. According to the convention introduced above, the first
input neuron generates the value z1, and the second input neuron generates the
value z2. Assuming that the weights of the input channels of the first hidden
neuron are equal to v, and vig, respectively, the activation of the first hidden

390

neuron is equal to v1; 21 +v1222. This hidden neuron then generates the output
value s; given by

s1 = o(viier + vigz2 + M),

where 77 is the threshold value of the neuron. Likewise, the second hidden
neuron generates the output value

53 = 0 (Vo1 @1 + V22T + 7M2).

Let the weights associated with the output neuron be equal to w; and ws, and
let its threshold value be 8. Clearly, the activation of the output neuron is
equal to wys; + wass. The output neuron generates the output value y given

by

y = o(wys1 + wass + 0).

We conclude that this neural network defines a function F from R? to R defined
by F(zy,z2) =y.

Vi1

Voo \

FiGURE 4. Example of feedforward network

2.4. Network architecture

We note that as soon as the transfer functions of the neurons, and the directed
graph are specified, the structure of a neural network is completely determined.
The only remaining freedom are the values of the weights and the thresholds
of the hidden neurons and the output neurons. Of course, the properties of
the neural network are highly dependent of the particular value of these pa-
rameter values. In order to stress that the weights and threshold values are
considered as free parameters, the fixed directed graph together with the fixed

391

transfer functions are often called the network architecture. Given a network
architecture, each choice of weights and threshold values yields exactly one
neural network. This means that a network architecture can be considered as a
parametrized family of functions in the following way: as soon as the directed
graph, together with the transfer functions are specified, the number of input
neurons (m), and the number of output neurons (p) are fixed. The remaining
freedom is exactly given by the weights and thresholds w;j,8;. Thus, the net-
work architecture defines a family of functions Fy,; 9, : R™ — P, parametrized
by the w;;’s and 6;’s. In the example above, the parameter is equal to the joint
vector (v11,v12, V21, Va2, W1, w2,M1,72,0) € R®. Often, the terminology ‘neural
network’ is used if in fact we are dealing with a network architecture. Also
in this paper, we will often speak about neural networks as being families of
functions parametrized by the weights and thresholds.

2.5. Neural networks, representation, and learning

In the human brain the process of learning takes place. In artificial neural
networks the process of learning is modelled as change of weights and threshold
values. We will come back to this later in this paper. Central issues in the the-
ory of feedforward networks are the following. Suppose a network architecture
with m inputs and p outputs is given. In addition, suppose a fixed function
G :R™ — RRP is given.

e Representation. Does there exist a particular choice of weights and
threshold values such that the corresponding network function F' is (ap-
proximately) equal to G?

e Learning. Is it possible for the network architecture to learn the func-
tion G, i.e., can we come up with some mechanism or algorithm that
keeps adapting the values of the weights and thresholds until the result-
ing network function F' is (approximately) equal to G?

3. THE PERCEPTRON

A simple example of a feedforward network is the following feedforward net-
work consisting of m input neurons, 1 output neuron and no hidden neurons.
The input neurons are labeled 1,2, ..., m. The weight associated with the con-
nection between input neuron j and the output neuron is equal to w;. The
threshold value of the output neuron is equal to 8. We assume that the output
neuron has transfer function, H, the Heaviside step function.

This feedforward network is called the Perceptron and was proposed in 1959
by F. ROSENBLATT [8]. Let w := (wy,ws,...,wp) be the vector consisting of
the weights. If the input vector to the network is & = (x1,x2,...,%m), then
clearly the output generated by the network is equal to

y=Hw- z+90).

where - denotes the standard inner product on R™. As explained above, this
can be interpreted by saying that the Perceptron (or rather: the Perceptron

392

FiGURE 5. The Perceptron

architecture) defines a family of functions, from R™ to {0, 1}, parametrized by
(w,0) € R™*! and given by

Flwo(z) =H(w-z+90).

Any particular choice of parameters (w,) yields exactly one Perceptron.

In this section we will study for the Perceptron the two central issues that
were raised in the previous subsection, the issues of representation and learning.
The first issue that we will consider is the issue of representation.

3.1. The Perceptron representation theorem

The first question that we will study is the following: suppose that S is a given
subset of R™, and G : § — {0,1} a given function, do there exist parameter
values w € R™ and ¢ € R such that the corresponding network function F{,, g)
restricted to S is equal to G, i.e. such that for all z € S we have

393

G(z) = H(w -z +90).

As an example, consider the situation that m = 2. Let S be the subset of 2
cousisting of the four vectors (1,0), (0,1),(0,0),(1,1). Define G by G(1,0) =1,
G(0,1) = 1, G(0,0) = 0, and G(1,1) = 1 (G is the Boolean function ‘OR’).
The question is now: do there exist wy, wes € R and € < 0 such that the vector
(0,0) is seperated from the points (1,0),(0,1) and (1,1) by the hyperplane
wy 1 +wexs+60 = 0. Clearly one of the many choices is to take wy = 1, wy = 1
and 8 = —%. Hence we have found that the Boolean function G is representable

2
by a Perceptron: G(w1,22) = H(xy + x2 — 5) for all (21, 32) € S.

-1/2
X /

FIGURE 6. Perceptron representing G

It is clear that, in general, G(z) = H(w-z +0) for all z € S if and only if the
points in & which satisfy G(z) = 1 are separated from the points in & which
satisfy G(z) = 0 by the line w -z + 6 = 0.

This observation motivates the following definition: a subset S of R™ is
called linearly separable with respect to G if there exists w € R™ and # € R
such that for all z € S we have:

Glz)=1 < w-z+6>0,
Glz)=0 < w-z+6<0.

The following result then precisely characterizes the functions G that are rep-
resentable by a Perceptron:

THEOREM 3.1. Let S be a subset of R™ and let G be a function from S to
{0,1}. There exists a perceptron with m input neurons that represents the
function G if and only if S is linearly separable with respect to G.

394

From this it is immediately clear that there exist very simple Boolean func-
tions that can not be represented by a Perceptron: take for example & =
{(1,0),(0,1),(0,0),(1,1)} and define a function G on S by G(1,0) = 1, G(0,1) =
1, G(0,0) = 0, and G(1,1) = 0. (This Boolean function is called the ‘exclusive
OR’ function.) Clearly, the set S is not linearly separable with respect to the
function G and consequently G cannot be represented by a Perceptron. The
observation that there exist very simple Boolean functions that cannot be rep-
resented by a Perceptron was made in 1969 by M. MINSKY and S. PAPERT
[16].

3.2. The Perceptron and learning
We will now consider the second central issue, that of learning. Suppose that,
again, a subset S of R™ together with a function G from § to {0,1} are
given. The question we want to study here is: can we find some mechanism
or algorithm that adapts the values of the weights w and threshold € until the
resulting network function Fi,, ¢y is (approximately) equal to G?

The basic idea for such an algorithm could be as follows:

e Start with taking an arbitrary sequence {X1, X,...} with X; € S. As-
sume that we know the correct values of G in these points, i.e. we know

G(X1),G(Xa),. ...

e ‘Present’ these correct pairs (X;,G(X;)), ¢ = 1,2... to the Perceptron
architecture.

e On the basis of these ‘learning examples’ update the values of the weight
vector w and the threshold 6.

e After having presented the perceptron a large number of correct examples,
let the updated values of the weight vector and threshold be w* and
6, respectively. Now hope that the network function F{y-g~) of the
corresponding Perceptron is (approximately) equal to the given function

G

Formalizing the above idea leads to the so-called Perceptron learning algorithm
(given in 1959 by F. ROSENBLATT, [8]), which is defined inductively as follows:
let € be some fixed positive real number.

e At t =0, choose arbitrary initial values w, and 6.

e At time t = n+1 present the input vector X,, ;. Now update the current
values w,, and 6, according to the following rule:
- fH(w, Xny1+0,) = G(X,41) then take w,, | = w, and 0,11 = 0,,.

- If H(w,Xns1 +0,) =0 but G(Xp11) = 1, then take w, |, = w, +
eXnt1 and 0,01 =0, + €.

- If H(w, Xns1 +0n) =1 but G(Xp41) =0, then take w, | =w, —
eXnt1 and 0,01 =6, — €.

395

The rationale behind this updating rule is of course that if at step n 4+ 1 the
network corresponding to the parameter values w,, and 8,, happens to give the
correct functional value G(X,41), then there is no reason to change the current
value of the weights. If on the other hand, for example, H(w, Xnt+1 +6,) =0
but G(Xp41) = 1, then the updating rule w,,, | = w, +eX, 41 and 0,41 = O, +¢
yields

W1 Xpg1 + 01 = (W, Xng1 +0n) + €| Xnpa | + .

Now, the first term on the right in the above equation, w, X,4+1 + 0y, is less
than or equal to 0, and exactly this fact caused the network to give the wrong
value 0. The updating rule at least yields

ﬂn+1Xn+1 + 0n+1 Z wan+1 + en

This means that if in the next step of the algorithm the same vector X, 1
would be presented, then the network associated with parameter values w,,
and 6,41 would be ‘closer to’ giving the correct value. In a sense this means
that the parameter values are ‘pushed in the right direction’ while presenting
the examples. One could think of this as a process of learning on the basis of
examples. The number £ > 0 is called the learning rate of the algorithm. It
turns out that under certain assumptions on S and G the parameter sequences
{w,} and {60,} converge:

THEOREM 3.2. Let S be a finite subset of R™ and G a function from S to {0,1}.
Assume that S is linearly separable with respect to G. Let € > 0. Then for each
sequence {X,} in S and for all initial values wy, 6y, there exists an integer Ny
such that for all n > Ny we have w, = wy and 0, = Oy,. Define w* := wn,
and 0* = 0n,. Then for all n > Ny we have H(w*X,, + 6*) = G(X,,).

The above theorem is called the Perceptron convergence theorem. The first
statement of the theorem says that the parameter sequences {w,} and {6,}
become stationary after finitely many steps, say w* and 6*, respectively. The
second statement says that the network function corresponding to these par-
ticular values will take the correct functional values in the remaining terms
of the sequence of examples. We note that this result does not say that the
stationary values w* and 6* yield the correct network function on the entire set
S: only in the remaining terms of the sequence of examples the correct values
are attained. Of course, an extreme case is to take a sequence consisting of the
constant term X,, = z € S. It is indeed reasonable that the network function
will learn the correct value G(z) by presenting the example (z,G(z)) over and
over again, but it can not be expected that the network will learn anything
about the other points in §. On the other hand, the theorem does say that
by choosing a suitable sequence {X,} it is possible to find values of w* and
0* that yield the correct network function on the entire set S. Indeed, assume
that & = {x1, x2,...,2,} and take the sequence

{Xn} = (1,20, ., Ty, @1, T2, ooy Ty T1, B2y y Ty).

396

This shows that the Perceptron architecture is capable of learning the correct
values of the given function by presenting it the complete set of correct function
values.

4. LAYERED FEEDFORWARD NETWORKS

The Perceptron is a feedforward network whithout hidden neurons. The out-
put neuron has transfer function . We saw in the previous section that in
connection with the representation of functions by perceptrons, we have the re-
striction of linear separability. In this section we will admit hidden neurons in
the network. We will restrict ourselves here to feedforward networks in which
the hidden neurons are grouped into what we will call layers. Suppose we have
a feedforward network with m input neurons and p output neurons. The net-
work is called layered if all paths from sources to sincs have the same length,
say £. In that case we say that the network has h := £ — 1 hidden layers.

input layer
output layer
hidden layer 1

FIGURE 7. Layered feedforward network with 3 hidden layers

We will also admit more general transfer functions in the network. The
hidden neurons will all be assumed to have the same transfer function, say
o, where o is an arbitrary function from R to R. Sometimes we will assume
that the output neurons also have this transfer function o. Depending on the

397

context, sometimes the output neurons will have the transfer function H or the
transfer function f(z) = z.

It turns out that admitting hidden neurons extends the capability of repre-
senting functions by feedforward networks. Recall from the previous section
that the ‘exclusive OR’ function could not be represented by a Perceptron. It
turns out that if, in addition to the two input neurons and the output neuron,
we admit one layer consisting of two hidden neurons, then there exist a choice
of weights and thresholds such that the corresponding network function is equal
to the ‘exclusive OR’ function. Indeed, if for the transfer function of the hidden
neurons and the output neuron we take H, then the network function F'(z1, x2)
is given by

F(zy,22) = H(w1s1 +wase + 0),
with s; and s given by

s1 = H(vi1@y +vi2@2 +m1),

s = H(va1®1 + va2za + 12).

It is easily seen that if we take 8 =n; =12 =0, v11 = v92 = wy = wy =1, and
v12 = v21 = —1, then the corresponding network function equals the ‘exclusive
OR’ function.

This example illustrates how we can get around the requirement of linear
seperability by adding a layer of hidden neurons. Of course, there still re-
mains the issue of learning: is it possible, in the context of more complex,
multi-layered, network architectures, to develop learning algorithms that lead
to network functions that are (approximately) equal to an a priori given func-
tion? We will come back to this when we discus the so-called ‘Back Propagation
Algorithm’.

4.1. Representation and approximation of functions by feedforward networks
In this subsection we will discuss the issue of representation or approximation of
a given function by a multi-layered feedforward network. The question we want
to study is the following: suppose we have a given function G : R™ — RP, does
there exist a feedforward network achitecture such that for a suitable choice of
weights and thresholds the corresponding network function is (approximately)
equal to G? Of course, the network architectures we would be looking for
have m input neurons and p output neurons. However, in connection with the
problem stated, we could ask: if a certain function G can be represented or
approximated by a given feedforward network, then how many hidden layers,
and how many neurons per hidden layer would be needed for this?

It will turn out that any given continuous function G : R™ — RP can be
approximated arbitrarily close (in a sense to be explained) by a feedforward
network with one hidden layer. The number of hidden neurons, and the values
of the weights and thresholds will depend on the desired degree of accuracy of
approximation.

398

We will take a closer look at this for the case that m = p = 1. For a given
function o : R — R, let A'(n,0) be the set of all functions from R to R that can
be represented exactly by a feedforward net with one input neuron, one hidden
layer of n neurons, all having tranfer function o, and one output neuron having
transfer function f(z) = x. Denote the weights associated with the connections
between the input neuron and the hidden neurons by vy,...,v,, and denote
the thresholds of the hidden neurons by 71, ...,7n,. Denote the weights of the
connections between the hidden neurons and the output neuron by wy,...,w,,
and the threshold value of the output neuron by 8. It is then clear that A'(n, o)
consist exactly of those functions F': R — R that can be written as

F(z)=0+ 2 wio(vix + 1),
i=1
for certain v;,n;, w; and 0. Let A/(0) be the union over n of all N'(n, 0), i.e., the
set of all functions F': R — R that can be represented exactly by a feedforward
net with one hidden layer, with all hidden neurons having transfer function o.

r’_n_']_

FIGURE 8. Network representing a typical element from N(n,o)

We want to study the question in what sense a given function G : R — R
can be approximated by functions F' € (o). We will consider approximations
uniformly on compact intervals.

Following [7], we will call a transfer function o a universal transfer function,
if every continuous function G : R — R can be approximated arbitrarily close,
uniformly on any compact interval, by functions from A/ (o). More concrete:
o will be called a universal transfer function if for every continuous function
G :R — R for all a,b € R, and for each € > 0, there exist an integer n, and

399

real numbers vy,..., V0, M1, .., Pn, W1, ..., Wy, 0, such that the corresponding
network function F' satisfies

sup |F(z) — G(z)| < e.
z€[a,b]

The problem now is to characterize the set of universal transfer functions.

Before we take a closer look at this problem we would like to compare it with
the classical problem of approximating a given function on compact intervals
by trigonometric polynomials. It is well-known that every continuous periodic
function from R to R can be approximated arbitrarily close by trigonometric
polynomials, uniformly on R. From this it is easily seen that for every given
continuous function function G, for all a,b € R, and every € > 0, their exist real
numbers ag, a1, ...,Qn, Bo,--.,Bn, such that the trigonometric polynomial P
given by

" kz+ By
a

P(z) = ap + ; ay, sin(b

satisfies

sup |P(z) — G(z)| < e.
z€[a,b]

In neural network terminology, this can be restated by saying that the function
x +— sinx is a universal transfer function!

2n/ (b-a)

3n/ (b-a)

FIGURE 9. Representation of a trigonometric polynomial

400

From the latter point of view, we think that it is quite a fascinating problem
to characterize all universal transfer functions. Before giving such characteriza-
tion, we first note that it is quite easy to come up with functions that certainly
are not universal: indeed, let o(z) be a polynomial in z, say of degree k. It
is then obvious that any network function, i.e., any element of N (c), is also
a polynomial, of degree less than or equal to k. Since, needless to say, not all
continuous functions can be approximated arbitrarily close by functions from
a class of polynomials with a fixed upper bound to their degree, polynomial
transfer functions fail to be universal.

This shows that for a function to be a universal transfer function it is nec-
essary that it is not a polynomial. A beautiful recent result by LESHNO, LIN,
PiNkuUSs and SCHOCKEN [15], shows that this condition is also sufficient: a
function o is a universal transfer function if it is not equal to a polynomial
almost everywhere.

THEOREM 4.1. Let 0 : R — R be bounded on each closed interval [a,b],
and continuous almost everywhere. Then o is a universal transfer function if
and only if there does not exist a polynomial p such that o(x) = p(z) almost
everywhere.

We note that if a given function is bounded on a closed interval [a,b], then it
is continuous almost everywhere on that interval if and only if it is Riemann
integrable over that interval (see RUDIN [19], Theorem 11.33). Hence, in the
above theorem, the condition ‘continuous almost everywhere’ can be replaced
by ‘Riemann integrable over all closed intervals [a, b]’.

Examples of universal transfer functions are of course manifold. Of interest
in the context of neural networks is the fact that the commonly used sigmoid
functions

o(x) L

T e P’
and

o(x) = tanh(Bz)

are universal transfer functions. Also the Heaviside function is universal. We
would like to stress here that, if we compare this result with the approximation
result using trigonometric polynomials, then there is one fundamental differ-
ence: the coefficients aj and B in the trigonometric polynomial approximation
can be calculated explicitly in terms of Fourier coefficients (one could take for
P the Cesaro mean), whereas the approximation theorem for neural networks
is only an existence result. The theorem only states that suitable weights and
thresholds exist, but does not give general formulas to calculate these real
numbers.

In the context of neural networks, the issue is rather to find schemes, al-
gorithms, or mechanisms to learn the appropriate values of the weights and

401

thresholds by presenting the network examples of values that the function to
be approximated takes in certain points.

The problem of approximating a given function by neural networks has been
the subject of a large amount of research activity in the field of neural nets
in the past six years. Related questions can already be found in the work of
KoLMOGOROV [1]. Important contributions can also be found in the work of
HECHT-NIELSEN, [18]. In 1989, HORNIK [12] showed that every non-constant,
bounded, and continuous function o is a universal transfer function. Of course,
the latter now follows from the more recent theorem stated above. Among
other relevant references, we mention CYBENKO [9] and FUNAHASHI [13].

We note that the result by Leshno, Lin, Pinkus and Schocken also holds for
continuous functions G from R™ to RP. In the definition of universal transfer
function and in the statement of the theorem, the interval [a, b] should then be
replaced by an arbitrary compact set K C R™.

It is expected that if, for a certain compact set £ C R™, we require the
accuracy of appproximation to increase (i.e, if we let € become smaller and
smaller), then the number of neurons in the hidden layer should increase. On
the question how exactly the number of neurons depends on the accuracy of
approximation, we mention recent results by BARRON, [2, 1], and by JONES
[14]. They proved the following remarkable result for neural networks with
sigmoid tansfer function: For a given compact subset K C R™, a sufficiently
smooth target function G : K — R can be approximated in Ly-sense by a neural
network with 1 hidden layer containing n neurons at a rate O(%)

If, instead of general functions from R™ to RP, we restrict ourselves to
Boolean functions, i.e., functions from {0,1}™ to {0,1}?, then the situation
is somewhat clearer. It was shown in 1987 by DENKER, SCHWARZ, WITTNER,
SorrLa, HOWARD, JACKEL and HOPFIELD [11] (see also [4], page 55), that
every function G : {0,1}™ — {0,1}? can be ezactly represented by a feedfor-
ward network with one hidden layer consisting of p2™ neurons, provided the
hidden neurons and output neurons all have transfer function H. Of course,
the number p2™ can in certain situations be very conservative: we showed that
the ‘exclusive OR’ can be represented using only 2 hidden neurons.

4.2. Learning in general feedforward networks

In the previous subsection we saw that if o is a universal transfer function,
then every continuous function G : R™ — RP can, on any compact set, be ap-
proximated arbitrarily close by a feedforward net with one hidden layer, where
the hidden neurons have transfer function o. As noted, this result is basically
an existence result and the question remains: how should we determine, for
a given compact set K and a certain accuracy £ > 0, the number of hidden
neurons and suitable values for the weights and thresholds. In neural nets one
would like to obtain suitable values by some kind of learning algorithm. In
this subsection we will discuss a basic learning algorithm for feedforward nets,
called the Back Propagation Algorithm.

For simplicity, we assume that p = m = 1. Suppose that o is a universal

402

transfer function, and suppose we have a continuous function G from R to R.
Let a,b € R, and let € > 0. The problem is how to determine an integer n,

vectors v = (v1,...,vn), N = (M,...,Mn), w = (w1,...,w,), and a real number
f such that
sup |G(z) — Fypuwe(@)| <e, (1)
z€la,b] -

where the network function corresponding to the particular values for the
weights and thresholds is given by

Fypuwo(@) =0+ wio(viz +)
i=1

The idea is to take a fixed network architecture (i.e. to fix the number of
hidden neurons n) and then try to obtain suitable values for the weights and
thresholds by presenting the network architecture a number of learning ex-
amples. More concrete, one chooses z1,...,z, € R and ‘shows’ the network
the examples (z1,G(21)),..., (x4, G(z4)) in the following sense: starting with
arbitrary values for the weights and thresholds v, n, w, 6 one calculates the val-
ues Fy pw,o(€1), ..., Fynwo(tq) the network generates in the points z1, ..., Zq.
One compares these values with the values G(z1),...,G(z,) the network should
have generated. Then, on the basis of the error that occurs, the values for the
weights and thresholds are updated. Next, the experiment is repeated with
these updated values. One hopes that after a sufficiently large number of rep-
etitions of this experiment the values of the weights and thresholds are such
that (1) holds.

To be more specific, for given values of the weights and thresholds, the net-
work makes a quadratic error

q

Z(Fg,g,wﬁ(mu) - G(Iu))2a

i=1

E(Qa n,w, 0) =

N | =

We stress that the error only depends on the values of the weights and thresh-
olds. In fact, the error is a function from R3*"*! to R*. In order to obtain
suitable values for the weights and thresholds, it is not unreasonable to min-
imize the error function E(-). Now, the idea is to have the updating of the
weights and thresholds based on minimizing the error function iteratively. If
for the iterative method we use ideas from the method of steepest descent, we
arrive at the celebrated Back Propagation Algorithm.

Recall that if f : RV — R is a differentiable function, then for a given
z € RV the direction in RY along which the function decreases most rapidly
is given by —V f(z), where Vf denotes the gradient of f. The method of
steepest descent is an iterative method that is aimed at finding z* € RV in
which the function f attains a minimum. Starting with an initial guess zy of
x*, a sequence zg, 1,3, ... s defined iteratively by

403

l‘k+1 =T — ska(a:k),

where s > 0 is choosen to minimize the function ¢ (s) := f(zr — sV f(2k)).
This leads to a sequence {z} that would then, ideally, converge to a minimizing
x*.

In neural nets, a rudimentary version of this iterative algorithm is used to
tackle the problem of iteratively minimizing the error function E(:). Instead
of performing, at each step k, minimization of the function ¢(s) to obtain sy,
one simply fixes a small positive real number £ > 0 and defines a sequence {z}

by
Tp4+1 = Tl — EVf(:Uk)

It is then hoped that this sequence leads to a minimizing point z*.
We will now explain how these ideas lead to a learning algorithm. In order
to simplify notation, denote

p = (Qa 7, w, 0)

The value of p at iteration step k is denoted by p(k). The vector p(k) has
components v;(k),ni(k), w;(k) and 0(k). Now, fix the values zy,...,z, € R
(this set of fixed numbers is called the batch). Denote G; := G(z;), i =1,...,q.

For the sake of exposition, in the remainder of this subsection we will take a

particular transfer function, the sigmoid transfer function
1
o(x)

T e B
In the sequel, we will use the fact that, if 3 = 1,0 satisfies the differential
equation

o' =o(l—o0). (2)

Suppose that, at iteration step k, the current values of the weights and
thresholds are given by p(k). At this moment, the samples z1,...,z,, are
presented to the network. In response to the input value ;, the following
signals occur at the output branches of the hidden neurons and the output
neuron:

e the hidden neuron j generates the output value s;;(k) = o(z;v;(k) +
n;(k)),

e the output neuron generates the output value y;(k) = Fp(x)(w;).

Let us assume that, in some way, during this experiment, we make a record of
these output values s;;(k) and y;(k) (j =1,...,n,i=1,...,q).

Now, the updating of p(k) is done according to p(k+1) = p(k) —eVE(p(k)),
so we should in some way try to calculate the value of VE(p(k)). Clearly,

OF O0FE OE OFE

VE:(@;@;@;@),

404

so in order to update the weights and thresholds w(k) and 6(k) of the output
neuron we should calculate g—i(ﬂ(k)) and %—g(]_n(k)). It turns out that these vec-

tors of partial derivatives can be calculated explicitly, in terms of the recorded
output values. Indeed, it is straightforward to verify that

o pk) = > (k) — Gosalh),
and
2 k) = > () = G

If we introduce the error of the output neuron at step k corresponding to the
sample x; by

Ai(k) == (yi(k) — Gi),
then the updating rules for w(k) and 6(k) can be written as

we(k+1) = we(k)—c¢ Z Ai(k)sie(k),

o(k + 1) 0(k) — ¢ Xq:Ai(k).

To find the updating rules for the weigths v(k) and thresholds n(k) of the
hidden neurons, we should calculate @(B(k)) and %(Q(k)). We calculate:

Ov
g_z(z—j(k)) = Z(yl(k) - Gz)wl(k)sze(k)(l — sil(k))l'i,
and
g_i(g(k)) = Z(y’(k) - Gi)wl(k)sil(k)(l - Siz(k)).

Here, we used the fact that o satisfies the differential equation (2). Introduce
the notation

Aig(k) := (yi(k) — Gi)we(k)sie(k)(1 — sie(k)).
Then the updating rules for v(k) and n(k) can be written as

ve(k+1) = (k) =Y Aig(k)as,
me(k+1) = m(k) —e Aulk).

405

Note the similarity in structure between the updating rules for the output
neuron and the hidden neurons.

The most striking feature of these updating rules is that one can interpret
the updating to take place in two separate stages, in the following sense. One

should first note that the A;(k)’s can be calculated from A;(k) by the following
formula:

Aje(k) = Ag(k)we(k)sie(k)(1 — sie(k)). (3)

Thus one could consider the updating of the weights and threshold of the out-
put neuron (which only uses A;(k)) as the first stage of the updating procedure.
In the second stage of the updating procedure, one first calculates the Aig(k)’s
from A;(k), and then updates the weights and thresholds of the hidden neurons
using these numbers. One could consider Ay (k) as a kind of error, the error
of the £-th hidden neuron at step k corresponding to the sample x;. Formula
(3) can then be interpreted as a formula that calculates the errors of the hid-
den neurons using the error of the output neuron. In this sense, the error is
propagated backwards through the network, starting at the output neuron. This
structure of the updating algorithm explains the terminology Back Propagation
Algorithm.

The above describes the kth iteration step. At each iteration step, the same
batch x1,...,24 is used. In principle, the algorithm stops at stage N, if NV is
such that

E(Q(N)vﬂ(N)vw(N)v Q(N)) <7,

where + is some a priori given tolerance.

In the above, for the sake of exposition we have restricted ourselves to the
case that p = m = 1, and that we have only one hidden layer. In the general
case the ideas remain the same. If the network has h hidden layers, then each
iteration step is subdivided into h + 1 stages. Counting layers from the right
to the left, each stage corresponds to a calculation of the errors in a layer in
terms of the errors in the previous layer (‘back propagation of errors’), and an
updating of the weigths and thresholds in the layer.

The Back Propagation Algorithm was discovered in 1974 by PAuL J. WER-
BOS [17]. After being ignored for over two decades, it was rediscovered inde-
pendently in 1985 by DaviD E. RUMELHART [6] and DAVID B. PARKER [5].
The algorithm plays an important role in artificial neural networks. Together
with its variations based on more advanced iterative minimization algorithms
(like e.g. the conjugate gradient method), it provides a reasonable training
method for multi-layer feedforward networks. Because of its simple structure,
the algorithm can be easily implemented on electronic computers. For a more
general treatment of the Back Propagation Algorithm we refer to [4], [10], or
[3].

406

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A K. KOLMOGOROV (1957). On the representation of continuous functions
of several variables by superposition of continuous functions of one variable
and addition. Dokl. Akad. Nauk SSSR, 114, page 953.

A.R. BARRON (1991). Universal approximation bounds for superpositions
of a sigmoidal function. preprint, Dept. of Statistics, University of Illinois,
Urbana, USA.

B.J.A. KROSE and P.P. VAN DER SMAGT (1991). An Introduction to
Neural Networks. The University of Amsterdam.

B. MULLER and J. REINHARDT 1990. Neural Networks, an Introduction.
Springer Verlag.

D.B. PARKER (1985). Learning-logic: casting the cortex of the human
brain in silicon. MIT Techn. Report TR-47.

D.E. RUMELHART, G.E. HINTON and R.J. WiLLiAMS (1986). Learning
representations by back-propagating errors. Nature 323, pages 533-536.
E.D. SoNTAG (1993). Neural networks for control. In H.L. TRENTELMAN
and J.C. WILLEMS, editors, Essays on Control: Perspectives in the Theory
and its Applications, pages 339-380. Birkh&user, Boston.

F. ROSENBLATT (1959). Principles of Neurodynamics. Spartan Books,
New York.

G. CYBENKO (1989). Approximation by superpositions of a sigmoidal
function. Math. Control, Signals, and Systems 2, pages 303-314.

J. HErTz, A. KROGH and R.G. PALMER (1991). Introduction to the
Theory of Neural Computation. Addison-Wesley, Redwood City.

J.S. DENKER, D. SCHWARTZ, B. WITTNER, S. SoLLA, R. HOWARD, L.
JACKEL and J. HOPFIELD (1987). In Complex Systems 1, page 877.

K. HorNIK (1991). Aproximation capabilities of multilayer feedforwrd
networks. Neural Networks 4, pages 251-257.

K.I. FUuNAHASHI (1989). On the approximate realization of continuous
mappings by neural networks. Neural Networks 2, pages 183—192.

L.K. JoNEs (1990). Counstructive approximation for neural networks by
sigmoidal functions. In Proceedings of the IEEE 78, pages 1586—1589.

M. LEsHNO, V. YAa. LiN, A. PINKUS and S. SCHOCKEN (1993). Multi-
layer feedforward networks with a non-polynomial activation function can
approximate any function. To appear in: Neural Networks.

M. MinskY and S. PAPERT (1969). Perceptrons: An Introduction to
Computational Geometry. The MIT Press.

P.J. WERBOS (1974). Beyond regression: new tools for prediction and
analysis in the behavioral sciences. Master’s thesis, Harvard University.
R. HECHT-NIELSEN (1989). Theory of backpropagation neural networks.
In Proceedings of the Int. Joint Conf. on Neural Networks, San Diego: SOS
Printings, pages 593—606.

W. RUDIN (1976). Principles of Mathematical Analysis. McGraw-Hill,
New York.

W.S. McCuULLOGH and W. PITTS (1943). A logical calculus of the ideas

407

immanent in nervous activity. Bulletin of Mathematical Biophysics 5, pages
115-133.

408

